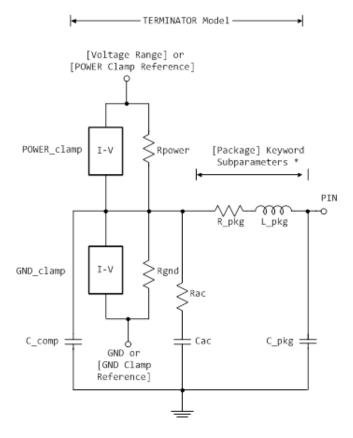
#### C\_comp in IBIS

Walter Katz SiSoft IBIS-ATM June 9, 2015


# IBIS Describes How to Hook Up C\_comp When Deriving IV Curves

 For example, the following pictures on page 61 (in IBIS 6.0) relate to the method of "Data Collection" to determine the models IV curves.

#### **IBIS 5.0**

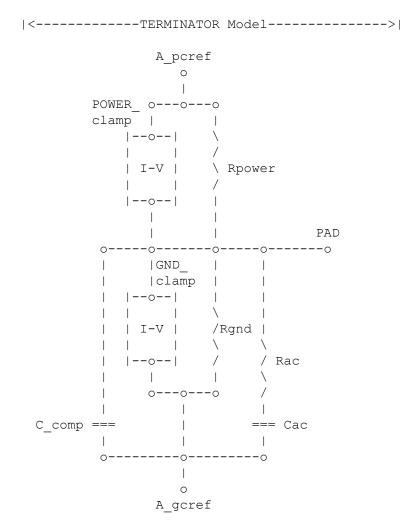
<----TERMINATOR Model----->| [Voltage Range] or [POWER Clamp Reference] 0 POWER 0---o clamp | |--0--| \ Rpower [Package] Keyword | I-V | Subparameters \* |--0--| |<---->| PIN -----0----/\/\/\--00000000000 ---0------0-0-R\_pkg L\_pkg | GND |clamp |--0--| /Rgnd | | I-V | / Rac |--0--| 0---0 C comp === === Cac C pkg === 0 GND or [GND Clamp Reference] 0 GND

#### IBIS 5.1 Incorrectly Replaced GND with GND Symbol



\* Note: More advanced package parameters are available within this standard, including more detailed power and ground net descriptions.

## IBIS Describes How to Hook Up C\_comp\_\* When Simulating


IBIS 6.0 page 32:

C comp\_pullup, C\_comp\_pulldown, C\_comp\_power\_clamp, and C comp gnd clamp are intended to represent the parasitic capacitances of those structures whose I-V characteristics are described by the [Pullup], [Pulldown], [POWER Clamp] and [GND Clamp] I-V tables. For this reason, the simulator should generate a circuit netlist so that, if defined, each of the C\_comp\_\* capacitors are connected in parallel with their corresponding I-V tables, whether or not the I-V table exists. That is, the C comp \* capacitors are positioned between the signal pad and the nodes defined by the [Pullup Reference], [Pulldown Reference], [POWER Clamp Reference] and [GND Clamp Reference] keywords, or the [Voltage Range] keyword and GND.

# IBIS Does not Describe How to Hook Up C\_comp When Simulating

- Cannot give a reference page because there is none.
- On page 70 it leaves it up to the simulator
  - All tables assume that the die capacitance is included. Potential numerical problems associated with processing the data using the effective C\_comp (or C\_comp\_\* values as appropriate) for effective die capacitance may be handled differently among simulators.

#### Correct Picture of the Terminator Model for Simulation



#### Connecting C\_comp to Node 0 is Wrong

 Results are significantly different when simulating with C\_comp connected between model pad and Node 0 and between model pad and A\_pdref when A\_pdref is connected to a power delivery network.

# Conclusion

IBIS should do one of the following:

- Recommend that model makers use C\_comp\_\* instead of C\_comp. (Informative).
- Recommend (or require?) that EDA tools connect C\_comp to A\_pdref, or split C\_comp between A\_pdref and A\_puref. (Informative or Normative).